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S T R I C T L Y  C O N J U G A T E  S T R E S S  A N D  S T R A I N  T E N S O R S  

S. N .  K o r o b e i n i k o v  UDC 539.0 

A subclass of strictly conjugate tensors, namely, the tensors that satisfy the requirement for 
transformation by the same law upon rigid motion of the neighborhood of a material particle, 
is separated into the class of work-conjugate stress and strain tensors. The advantage of the 
use of strictly conjugate stress and strain tensors in formulating the variational principles for 
bodies from a hyperelastic material is shown. 

I n t r o d u c t i o n .  At present, various stress and strain tensors are used in continuum mechanics. The 
first a t tempts  to put  a certain stress tensor into correspondence with a certain strain tensor with the use 
of the work of internal forces were made in [1]. The stress and strain tensors that  are work-conjugate were 

defined in [2-7]. In the present work, we propose to introduce a subclass of work-conjugate stress and strain 
tensors that  meet the requirement for transformation by the same law of conjugate stress and strain tensors 
upon rigid motions of the neighborhood of a material particle. It is shown that  when this restriction is not 
satisfied, some known functionals for the variational equations of the nonlinear theory of elasticity do not 
possess the property of invariance relative to the rigid motions entering the integrands of the terms. 

1. K i n e m a t i c s  o f  D e f o r m a t i o n .  Let X and w be the position vectors of a material particle of a 
deformable body in the reference and current configurations, respectively, and u - x -  X be the displacement 
vector of this particle. We introduce the asymmetric deformation-gradient F and displacement-gradient H 
tensors and the corresponding transposed tensors T' a n d / t  [3, 5-8]: 

F _-- x~7, H = u~7, 

These tensors are related by the relations 

F = g + H ,  p = g +/~r 

/P -- ~Tm, /{ _= Vu.  (1.1) 

f '  = F t, / t  -- H t. (1.2) 

Here g is the metric (unit) tensor~ K7 is the Hamiltonian operator  in the metric of the reference configuration 
of a body, and the superscript "t" refers to transposition. In the Cartesian coordinate system with the 
orthonormalized basis vectors kl,  k2, and k3, the Hamiltonian operator is defined as ~7 - kiO/OX~ and the 
tensors F ,  _P, H,  a n d / ~  have the following representations: 

F = xi,jkikj, ~" ~- xj,ikikj, H ~- ui,jkikj, ~i r -~ uj,ik~kj, 

where ('),i - O(.)/OXi, Xi, xi, and u~ (i = 1, 2, 3) are the components of the vectors X ,  x, and u,  respectively; 

hereinafter, summation is performed over the repeated indices. 
The asymmetric tensors F,  F ,  H,  and/~r characterize the deformation of the neighborhood of a material 

particle tha t  includes its distortion and rotation. We consider the symmetric Green-Lagrange strain tensor 
which determines distortion of the neighborhood of the material particle [5-8]: 

1 E - - ~ ( ~ ' . I  ~-t _g)=_~l (/ur +/_~t +/~r./~r t) = ~ (_P t �9 F - g) = . (H + H t + H t" H) .  (1.3) 
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Hereinafter, the point between the tensors denotes the scalar (internal) product of the tensors. 
2. S t r e s s  Tensors .  The symmetric true Cauchy stress tensor is denoted by s. We introduce the 

nominal-stress tensors expressed in terms of the tensor s and the kinematic tensors introduced above [2-9]: 

r - - J s ,  S = . F  - 1 . r ' F  '-1, -/9--7"'/~-1, / 5 - - - F - 1 . 7 - = P  t, 

where J = p/fi = det F ,  p and t~ are the mass densities of a material in the reference and current configurations, 
7- is the symmetric Kirchhoff stress tensor, S is the symmetric second Piola-Kirchhoff stress tensor, P is the 
asymmetric first Piola-Kirchhoff stress tensor, and t5 is the asymmetric Lagrange stress tensor. 

3. C o n j u g a t e  S t ress  a n d  S t r a i n  Tensors .  The work of the internal forces per unit mass of a body 
is determined in the form [1-7, 9] 

1 1 
w =- - s  : d = - ' r  : d ,  (3.1) 

P 

where d - (l + / t ) / 2  is the symmetric strain-rate tensor, l = / / ' .  F -1 is the velocity-gradient tensor [6, 10], the 
dot denotes the material derivative, " : "  denotes the double scalar product of arbitrary tensors of the second 
rank A and/3 :  A : B -- tr (A- Bt), and tr h is the first invariant of the tensor of the second rank h. 

D e f i n i t i o n  1. We call the stress tensor A and the strain tensor B work-conjugate tensors if the 
equality 

A : / 3 = T : d  

holds. The equalities [2-9] 

r : d : S : E , = P :  f i = P : P = P :  H = P : H  (3.2) 

are true, i.e., the pairs of stress and strain tensors 

(S, E), ( /5 if,), (P, F) ,  (t5, H),  (P, H)  (3.3) 

are conjugate. One can introduce other pairs of conjugate stress and strain tensors [1-7]. 
We consider two body motions determined by the laws x = x ( X ,  t) and x*(X,  t), where t is a mono- 

tonically increased deformation parameter. If there is a neighborhood in which the equality 

x* (X , t )  = Q(t) . x ( X , t )  + c(t) 

holds for a certain material particle, the motion of this neighborhood from x to x* (or vice versa) is called 
rigid motion [5, 6, 8, 10]. Here Q(t) is the proper orthogonal tensor (Qt = Q- I ,  det Q = 1), which corresponds 
to the rotation of this neighborhood, and the vector c(t) corresponds to its displacement. 

D e f i n i t i o n  2. The stress and strain tensors are called strictly conjugate tensors if the work-conjugate 
stress and strain tensors are transformed under the same law upon rigid motions of the neighborhood of a 
material particle. 

Upon rigid motions of the neighborhood of a material particle, the stress and strain tensors introduced 
above are transformed by the following formulas [5, 6, 8, 10, 11]: 

E* = E ,  p .  = p .  Qt, F* = Q . F .  d* = Q . d . Q  t, 
(3.4) 

S* = S ,  p .  = p .  Qt, p .  = Q . p ,  T* = Q . v . Q t .  

We introduce the laws of transformation of the tensors/~r and H upon rigid motions of the neighborhood 
of a material particle. From (1.2) and (3.4), we obtain the relations 

if'* = g* + ffI*, F* = (g  + f I )  . Q t .  (3.5) 

Taking into account the equality g* = g, from (3.5) we obtain 

if-I* = Q t  _ g + I7t . Q t ,  H *  = 17-I *t = Q -  g +  Q . H .  (3.6) 

It follows from (3.4) and (3.6) that  of the conjugate pairs of tensors in (3.3) the pairs (S, E), (/5, if,), 
and (P, F)  are strictly conjugate. 
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4. C o n s t i t u t i v e  Re la t ions  of  a H y p e r e l a s t i c  M a t e r i a l .  In the classification of constitutive 
relations for finite (large) strains, three types of elastic materials are distinguished [9, 12]: hyperelastic, 
elastic, and hypoelastic. Under infinitesimal deformations of a body from a linear elastic material, the three 
formulations are equivalent [9]. According to [9, 12], we give the definition of a hyperelastic material. 

D e f i n i t i o n  3. The material of a body is called a hyperelastic material if there exists a natural 
configuration of the body in which the stresses and the strains are equal to zero and an analytical function 
W ( E )  formed relative to the natural configuration such that  the equality 

t i / - -  w. (4.1) 

holds at any point of the body. The mechanical meaning of the function W follows from the laws of thermo- 
dynamics: this function is a strain energy function per unit mass of a body. It is convenient to introduce the 
strain energy density [I:(E) [9] (strain energy per unit reference body volume): 

I~ r _~ pl,l: (4.2) 

From (4.1), (4.2), (3.1), and (3.2) follow the constitutive relations of a hyperelastic material: 

d ip  
S -  d E "  (4.3) 

The alternate forms of writing the constitutive relations of a hyperelastic material can be obtained 
with the use of other conjugate pairs of stress and strain tensors. Using (1.3), we derive the expressions of 
the strain-energy density: 

E ( F )  =- Ii,'[E(T')]. /~(F) --- t i :[E(F)],  /~(/~) _= Ii;[E(/~)], /~(H) _--_ IcV[E(H)]. (4.4) 

From (4.1), (4.2), (3.1), (3.2). and (4.4) follow the representations of the constitutive relations of a hyperelastic 
material [5, 7, 9, 12-15]: 

p = d E ( F )  d E ( F )  /5 = d E ( [ t )  d E ( H )  (4.5) 
d F  ' P -  d F  ' d-"-~'  P =  d----'H 

5. E q u a t i o n s  of  M o t i o n .  The equations of motion with boundary conditions are written by means 
of the stress tensor/5  [5, 6, 9, 12-15] 

V . D + p f = p ~ i  in V, u = u  p on S**, N - t S = T  p on ST (5.1) 

or P [81: 

P .  ~J + p f  = pii  in V, u = u p on S , ,  P .  N = T p on ST. (5.2) 

Here V is the reference configuration of the body, S.  and ST are parts of tile surface S (S = S.  U ST) 
tha t  bound the region V, on which the components of the displacement vector u and the stress vector 
T -- N - / 5  = p .  N are specified, N is the unit vector of the external normal to the surface S, and V . /5  and 
P -  ~7 are the notation of the operations of divergence of the tensors/5 and P, respectively (in the Cartesian 
coordinate system, we have V./5 =/s j i , jk i  and P.~7 = Pij , jk i) ,  and f is the mass-force vector; the superscript 
p denotes a prescribed quantity. 

The equations of motion with the use of the stress tensor S are derived after the expressions 

/5 = S-  _P = S .  (g + Vu) (5.3) 

are substituted into (5.1) or the expressions 

P = F .  S = (g + u~7) . S 

are substi tuted into system (5.2). 
6. S y s t e m s  of  H y p e r e l a s t i c i t y  E q u a t i o n s .  Various forms of writing the closed systems of equations 

that  describe deformable bodies from hyperelastic materials are obtained with the use of an appropriate 
conjugate pair of stress and strain tensors. Table 1 lists equations that  form these closed systems for the 
pairs of conjugate tensors considered. 
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TABLE 1 

Pair Equations 

S , E  
P, F 
P,F 
P, H 
P , H  

(5.1), (5.3), (4.3), (1.3), (1.1) 
(5.1), (4.5), (1.2), (1.1) 
(5.2), (4.5), (1.2), (i.1) 

(5.1), (4.5), (1.1) 
(5.2), (4.5), (1.1) 

7. C o m p l e m e n t a r y  S t ra in  E n e r g y  Dens i ty .  We assume that one can invert the constitutive 
relations (4.3) and (4.5): 

E = E ( S ) ,  _ P = F ( P ) ,  F = F ( P ) ,  [ t = [ I ( P ) ,  H = H ( P ) .  

Then, using the Legendre transformation, one can introduce functions, namely, the complementary strain 

energy densities: 

I T V c = S : E - I I  ~, / ~ c = / 5 : F ' - / ~ ,  E c = P : F - ~ 2 ,  E c = P : H - E ,  E c = P : H - L  (7.1) 

so that the inverted constitutive relations can be written in the form [5, 9, 14] 

diI.'~(S) ~ = dEc(P) d~Tc(P) [ t  = dEc(P)  dfT~(P) (7.2) 
E =  dS  ' d P  ' F =  d P  ' d [  ~ , H - -  d P  

It follows from (7.1) that 

I~T = S : E -  l~ ,  / ~ =  P : F -  Ec, ~ 7 = P : F - E c ,  
(7.3) 

E - - - P : H - E , c ,  f f - , = - P : H - E c .  

Using (3.4), for rigid motions we obtain. 

S* : E* = S : E,  P* : _P* = P : F,  P* : F* = P : F. 

Thus, for strictly conjugate pairs of stress and strain tensors, the underlined terms on the right sides 
of (7.3) are invariant (unvaried upon rigid motions) quantities. The strain energy densities on the left sides 
of (7.3) are invariant quantities. Therefore, the complementary strain energy densities ~-kc, Ec, and/~r are 
invariant quantities. Generally, the first terms on the right sides of the fourth and fifth formulas in (7.3) are 
not invariant quantities; therefore, the complementary strain energy densities Ec and Ec are noninvariant 
quantities as well. 

8. Var ia t iona l  P r inc ip les  of the  Non l inea r  T h e o r y  of  Elast ici ty.  We analyze different variants 
of writing of the functionals of two known variational principles of the nonlinear theory of elasticity (under the 
assumption that ~2 = 0 for static problems), namely, the principle of stationarity of the potential energy and 
the principle of stationarity of the complementary energy. In the sequel, it is assumed that the external-force 
vectors S and T p do not depend on the displacement vector u. 

For all the pairs of conjugate tensors considered, the functional of potential energy of a body from a 
hyperelastic material in the class of quite smooth displacement fields u which satis .fy the kinematic boundary 
conditions in (5.1) and (5.2), has the same form: 

p P 

liE(,<) - ps. ,<1 dv - / r , .  uds. I(u) 
d 
V S T  

Here E ( u )  - ~-V[E(Vu)] -- E[ F(Vu) ]  =/~[F(uV)]  = / ~ ( V u )  -- E(uV).  
The variational equation of the principle of stationarity of the potential energy is written in the form 

[5, 9, 14] 
5I(u)  ---- O. (8.1) 
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The equations of the Euler and natural boundary conditions of the variational equation (8.1) are the equations 
of equilibrium and the static boundary conditions in (5.1) or (5.2) with allowance for the dependences/5 = 
/5(Vu) or P = P(uV), which are obtained when the constitutive relations of a hyperelastic material in (4.5) 
and the kinematic constrains in (1.1) and (1.2) hold. 

Consideration of the variational principle of stationarity of the complementary energT only for asym- 
metric conjugate pairs of stress and strain tensors make sense [14]. We consider the functional (compIementary 
energy) proposed in [16] in the class of sufficiently smooth fields of the Lagrange stress tensor/5, which satisfy 
the equations of equilibrium (ii = 0) and the static boundary conditions in (5.1): 

- [ dV - [ N. P. J(P) (8.2) 
. I  

V S~ 

The variational equation of the complementary-energy principle is written in the form [16] 

5J(/5) = 0. (8.3) 

The Euler equation of the variational equation (8.3) is a compatibility equation, which is the second equation 
in (7.2), where/~ - Vx. 

If one uses the corresponding fields of the first Piola-Kirchhoff stress tensor, which satisfy the equations 
of equilibrium and the static boundary conditions in (5.2), instead of the varied fields of tile Lagrange stress 
tensor/5, P,  the functional (8.2) should be replaced by the functional 

J(P) -- / - / x .  P .  N dS. (8.4) 
V S~ 

The third equation in (7.2), where 5J(P) = 0, is the Euler equation of the variational equation F -= xV. 
We consider the functional [14] 

'(/5) - / Ec(/5) d V -  / N .  /5.udS. (8.5) 

v s,, 

The fourth equation in (7.2), where 6J(/5) = 0, is the Euler equation of the variational equat ion/ i t  __-- Vu.  
For the variational equation 6J(P) = 0 with the functional 

J(P) -- / Ec(P) dV - / u - P- N dS, (8.6) 

the fifth equation in (7.2), where H -- uV,  is the Euler equation. 
It is noteworthy that  the integrands in the volumetric integral are invariant quantities in the functionals 

(8.2) and (8.4) and noninvariant quantities in the functionals (8.5) and (8.6). 
Conc lu s ions .  In the present study, the notion of strictly conjugate stress and strains tensors has 

been introduced; the use of these tensors does not lead to noninvariant expressions for complementary strain 
energy density. The conjugate pair of tensors (/5,/~), which does not enter the class of strictly conjugate 
tensors, is used in some studies (el. [9, 13-15]). The use of strictly conjugate pairs (/5, _p) [5, 6, 12, 16] or 
(P, F)  [8, 11] is preferred in the consideration of hyperelastic materials. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01- 
00525) and the Program "Universities of Russia - -  Fundamental Research" (Grant No. 1795). 
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